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1 Introduction

It is known since 1970, see [1], that the presence of a constant classical EM field background

in Minkowski space-time leads to the modification of Poincare symmetries. One obtains

the enlargement of Poincare algebra, called Maxwell algebra [2, 3] which is obtained by the

replacement of the commutative momentum generators Pa, (a = 0, 1, . . . , d) by

[Pa, Pb] = i eZab, Zba = −Zab, (1.1)

where e is the electromagnetic coupling constant.
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It is known that the Poincare algebra does not permit any central extensions in D =

d + 1 (d > 1) dimensions, see for example [4]. The new generators Zab describe so called

tensorial central charges1 and satisfy the relations

[Mab, Zcd] = −i (ηbc Zad − ηbd Zac + ηad Zbc − ηac Zbd),

[Pa, Zbc] = 0, [Zab, Zcd] = 0. (1.2)

A dynamical realization of Maxwell algebra can be obtained by considering the relativistic

particle coupled in minimal way to the electromagnetic potential Ab = 1
2f0

abx
a defining the

constant field strength Fab = f0
ab. The respective first order lagrangian is the following

L = πaẋ
a − λ

2
(π2 + m2) +

e

2
f0

abx
aẋb. (1.3)

The coordinate πa can be expressed in terms of the canonical momenta pa conjugated to

xa as

πa = pa +
e

2
f0

abx
b. (1.4)

From (1.3) we get the second order lagrangian

L = −m
√

−ẋ2 +
e

2
f0

abx
aẋb. (1.5)

Note that this action is not invariant under the whole Maxwell algebra since part of the

Lorentz rotations is broken by the choice of constant electromagnetic field f0
ab. In order

to recover the Maxwell symmetry one has to promote f0
ab to be the dynamical degrees of

freedom and consider an extension of space-time by supplementing the new coordinates

θab(= −θba) which are canonically conjugated to Zab. In order to introduce the dynamics

invariant under the Maxwell group symmetries we have applied in [13, 14] the method of

non-linear realizations employing the Maurer Cartan (MC) one-forms (see e.g. [15, 16]).

The aim of this paper is to study all possible deformations of the Maxwell alge-

bra (1.1), (1.2), and investigate the dynamics realizing the deformed Maxwell symmetries.

In D 6=2+1 there exists only one-parameter deformation which leads for positive (neg-

ative) value of the deformation parameter k to an algebra that is isomorphic to the direct

sum of the AdS algebra so(d, 2) (dS algebra so(d + 1, 1)) and the Lorentz algebra so(d, 1).

We stress here that this deformation for k > 0 has been firstly obtained by Soroka and

Soroka who called the Maxwell algebra as the tensor extension of Poincare algebra [17, 18].

In D =2+1 one gets a two-parameter family of deformations, with second deforma-

tion parameter b. The parameter space (b, k) is divided in two regions separated by the

critical curve

A(b, k) =

(

k

3

)3

−
(

b

2

)2

= 0 (1.6)

1In euclidean spaces R2n and R4n with automorphism groups U(n) and Sp(n) × SU(2) (Kähler and

hyper-Kähler geometries), Galperin et.al. [5, 6] have obtained scalar as well as tensorial central extensions

(a triplet in hyper-Kähler). In the literature the tensorial central charges were introduced mostly in the

Poincare superalgebras [7–9] and also in p-brane non-relativistic Galilei and Newton-Hooke algebras [10–12].

– 2 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
9

on which the deformed algebra is non-semisimple. It appears that for A > 0 (A < 0) the

deformed algebra is isomorphic to so(2, 2)⊕so(2, 1) (so(3, 1)⊕so(2, 1)). On the curve (1.6)

the deformed algebra is the direct sum of D=2+1 Poincare algebra and D=2+1 Lorentz

algebra, Iso(2, 1) ⊕ so(2, 1).

In order to study the particle dynamics in the deformed cases we consider the MC one-

forms on the suitable coset of deformed Maxwell group. Firstly we obtain, for arbitrary D

and k 6= 0, b = 0, the particle model in curved and enlarged space-time yA = (xa, θab). We

choose the coset which leads to the metric depending only on the space-time coordinates

xa. We derive in such a case the particle model in AdS ( for k > 0) or dS ( for k < 0) curved

space-time with the coupling to Abelian vector field which generalizes, in the theory with

deformed Maxwell symmetry, the Lorentz force term describing the particle interaction

with constant electromagnetic field. The Lorentz force in the case studied here becomes

non-local.

In D=2+1 and k = 0, b 6= 0, we will consider a nonlinear field theory realization of

the deformed Maxwell algebra in six-dimensional enlarged space (xa, θa = 1
2ǫabcθbc; a, b =

0, 1, 2) by assuming that the surface θa = θa(x) describes D=2+1 dimensional Goldstone

vector fields.2 If we postulate the action of Volkov-Akulov type [19, 20] we shall obtain the

field theory in D=2+1 space-time with a lagrangian containing a free Abelian Chern-Simons

term [21–23].

The organization of the paper is as follows. In section 2 we review some properties

of the Maxwell group and consider the corresponding particle model. In section 3 we

will present all possible deformations of Maxwell algebra. In section 4 we construct the

deformed particle model for arbitrary D with k 6= 0, b = 0. In section 5 we consider D=2+1

case with k = 0, b 6= 0 and promote the group parameters θa to Goldstone fields θa(x).

These Goldstone-Nambu fields will be described by Volkov-Akulov type action. In the final

section we present a short summary and further outlook. Some technical details are added

in two appendices.

2 Particle model from the Maxwell algebra

In this section we construct a particle model invariant under the complete Maxwell algebra.

Such a model can be derived geometrically [14] by the techniques of non-linear realizations,

see e.g. [15], and by the introduction of new dynamical coordinates fab that transform

covariantly under the Maxwell group.

Let us consider the coset [13, 14]

g = eiPaxa
e

i
2
Zabθ

ab
. (2.1)

The corresponding Maurer-Cartan (MC) one-forms are

Ω = −ig−1dg = Pa ea +
1

2
Zab ωab +

1

2
Mab lab, (2.2)

2Such a method was used firstly by Volkov and Akulov to derive the Goldstino field action [19].
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where

ea = dxa, ωab = dθab +
1

2
(xa dxb − xb dxa), lab = 0. (2.3)

Differential realization of the Maxwell algebra generators is described by the left in-

variant vector fields in the extended space-time yA = (xa, θab),3 which are dual to the

one-forms (2.3) [14, 17].

A first order form of the lagrangian for the particle invariant under the full Maxwell

algebra with the coordinates fab describing new dynamical coupling can be written as [13]4

L̃ = πae
a
AẏA +

1

2
fab ωab

AẏA − λ

2
(π2 + m2), (2.4)

where

ea = ea
A dyA, ωab = ωab

A dyA, (2.5)

more explicitly,

ea
b = δa

b, ea
bc = 0,

ωab
c =

1

2
(xaδb

c − xbδa
c), ωab

cd =
1

2
(δa

cδ
b
d − δa

dδ
b
c). (2.6)

From the (2.4) we obtain the second order lagrangian

L = −m
√

−ẋ2 +
1

2
fab

(

θ̇ab +
1

2
(xaẋb − xbẋa)

)

= −m
√

−ẋ2 + Â∗. (2.7)

The Euler-Lagrange equations of motion are

ḟab = 0, (2.8)

θ̇ab = −1

2
(xaẋb − xbẋa), (2.9)

mẍa = fabẋ
b, (2.10)

where we took a proper time gauge in (2.10). Integration of (2.8) gives fab = f0
ab and such a

solution breaks the Lorentz symmetry spontaneously into a subalgebra of Maxwell algebra.

Substituting this solution in the equation of motion (2.10) we provide the motion of a parti-

cle in the constant electromagnetic field [1, 2] described by the lagrangian (1.5). From (2.9)

one can conjecture that the new coordinates θab are related with the angular momenta.

Notice that the interaction part of the lagrangian (2.7) defines an analogue of the EM

potential Â as one-form in the extended bosonic space (x, θ, f)

Â =
1

2
fab ωab (2.11)

The closed two form

F̂ = dÂ =
1

2
fab ea ∧ eb +

1

2
dfab ∧ ωab (2.12)

is such that the second term vanishes on shell (2.8). We see that on-shell the field strength

has the constant components fab.

3We could also have a realization in terms of right invariant vector fields that generate the infinitesimal

transformations (2.13).
4In the following we put the electric charge e equal to 1 for simplicity.
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2.1 Phase space realization and Casimir operators

The infinitesimal symmetries of the lagrangian (2.7) are5

Pa : δxa = ǫa, δθab = −1

2
(ǫaxb − ǫbxa),

Mab : δxa = λa
b xb, δθab = λ[a

c θcb], δfab = λ[a
c f cb], λab + λba = 0,

Zab : δθab = ǫab, ǫab + ǫba = 0. (2.13)

The corresponding Noether canonical generators are

Pa = −
(

pa −
1

2
pabx

b

)

,

Mab = −
(

p[axb] + p[acθb]
c + pf

[acfb]
c
)

,

Zab = − pab. (2.14)

They realize the Maxwell algebra (1.1) and (1.2), where pa, pab, p
ab
f are the canonically

conjugated momenta of the coordinates xa, θab, fab.

From the lagrangian (2.7) we obtain the constraints

φ =
1

2

(

π2
a + m2

)

= 0, πa ≡ pa +
1

2
fab xb,

φab = pab − fab = 0,

φab
f = pab

f = 0. (2.15)

The last two are the second class constraints and are solved by the choice (fab, p
ab
f ) =

(pab, 0).

The Hamiltonian becomes

H = λφ =
λ

2

(

π2
a + m2

)

(2.16)

and the Hamilton equations are, using pab = fab,

ẋa = λπa, ṗa =
λ

2
fac πc,

θ̇ab =
λ

2
π[a xb], ḟab = 0. (2.17)

It follows

π̇a = λ fac πc , (2.18)

then the constraints (2.15) and the global generators (2.14) are conserved.

There are four Casimirs in the Maxwell algebra in four dimensions, [2, 17]

C1 = P2 −MabZab, C2 =
1

2
Z2,

C3 = (ZZ̃), C4 = (PbZ̃ba)
2 +

1

4
(ZZ̃) (Mab Z̃ab), (2.19)

5 Our convention of anti-symmetrization is A[aBb] = AaBb − AbBa.
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where Z̃ab = 1
2ǫabcdZcd. The values of the Casimirs are, using the standard D = 4 notation

(B = f ij,E = f0i),

C1 = π2 = −m2, C2 =
1

2
f2 = B2 − E2,

C3 =
1

2
ǫabcdfabfcd = 4B ·E, C4 =

1

2
m2 f2 + (πb f ba)2 = m2(B2 + E2). (2.20)

where in the second term of C4 we took a frame in which πa = (m, 0, 0, 0) and imposed the

mass shell constraint. In more general case of time-like πa, B,E are defined relatively to

the direction of πa, so that expressions for C’s remain the ones given by the formulae (2.20).

2.2 First-quantized theory

Let us observe from (2.15) that the equation φ = C1 + m2 = 0 represents unique first

class constraint in the model. If we introduce first-quantized theory, in the Schrödinger

representation, we obtain the following generalized KG equation,
[

(

1

i

∂

∂xa
+

1

2i
xb ∂

∂θab

)2

+ m2

]

Ψ(xa, θab) = 0. (2.21)

In general case the remaining three Casimirs C2, C3, C4 are not restricted, however in order

to get the irreducible representation it is necessary to impose their definite values by three

differential equations

Cj Ψ(xa, θab) = λj Ψ(xa, θab), (j = 2, 3, 4), (2.22)

where

C2 = −1

2

∂

∂θab

∂

∂θab
, C3 = −1

2
ǫabcd ∂

∂θab

∂

∂θcd
,

C4 = −m2

2

∂

∂θab

∂

∂θab
+

((

∂

∂xb
+

1

2
xc ∂

∂θbc

)

∂

∂θba

)2

. (2.23)

The constraints Cj = λj can be incorporated into our particle model by introducing

suitable lagrangian multipliers in (2.4).

3 Deformations of Maxwell algebra

3.1 General considerations

In this section we would like to find all possible deformations of the Maxwell algebra. The

problem of finding the continuous deformations of a Lie algebra can be described in cohomo-

logical terms [24]. We first consider the Lie algebra-valued Maurer-Cartan (MC) one-form

Ω = −i g−1dg = λaGa, [Ga, Gb] = i Cc
ab Gc, (3.1)

where Ga’s are generators of a Lie algebra with the structure constants Cc
ab and λa is

the basis of left-invariant one-forms. The MC equation, dΩ + iΩ ∧ Ω = 0, becomes

dλa = −1

2
Cb

a
c λb ∧ λc, (3.2)

and describes the Lie algebra in terms of dual forms.

– 6 –
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We define the matrix-valued one-form Ca
b = λcCc

a
b and following the notation of [25]

we consider the covariant exterior differential D ≡ d+C∧ with D∧D = 0. The infinitesimal

deformations are characterized by the non-trivial vector-valued two-forms A(2) verifying

DA(2) = 0 , A(2) 6= −DΦ(1). (3.3)

Therefore the non-trivial infinitesimal deformations are in one to one correspondence with

the second cohomology group H2(g; g). If a non-trivial linear (infinitesimal) deformation

A(2) is found, the next step is to investigate the Jacobi identities of higher order in the

deformations parameters. The quadratic and higher deformations are controlled by the

cohomology H3(g; g). In the case when H3(g; g) vanishes, it is always possible to choose

a representative in the class of infinitesimal deformations such that it verifies the Jacobi

identity in all orders.

Let us apply the above ideas to the Maxwell algebra (1.1). The MC form for the

Maxwell algebra is

Ω = PaL
a
P +

1

2
ZabL

ab
Z +

1

2
MabL

ab
M (3.4)

The MC equations in this case are given by6

dLab
M + Lac

MLMc
b = 0,

dLa
P + Lac

MLPc = 0,

dLab
Z + Lac

Z LMc
b + Lac

MLZc
b − La

P Lb
P = 0. (3.5)

Expanding the vector-valued two-form A(2) on the basis of one-forms L’s and solving

the linear equations resulting from (3.3) we find a one-parameter family of non-trivial

solutions for A(2), with the exception that there is a two-parameter family in ”exotic”

case D=2+1.7 Infinitesimal deformations found in this way are not unique but have an

ambiguity described by DΦ(1). Since H3(g; g) vanishes8 finite deformations are found by

adjusting the trivial one-form in a way providing the Jacobi identities for finite values of

the deformation parameters. We find that for any dimension D there is a one-parameter

family of exact Lie algebras, but for D=2+1 there exists a two-parameter family. The MC

equations get additional terms representing deformations as follows

dLab
M + Lac

MLMc
b = b ǫabcLZcdL

d
P ,

dLa
P + Lac

MLPc = k Lac
Z LPc + b

1

4
Lab

Z ǫbcdL
cd
Z ,

dLab
Z + Lac

Z LMc
b + Lac

MLZc
b − La

P Lb
P = k Lac

Z LZc
b, (ǫ012 = −ǫ012 = 1). (3.6)

Here k and b are arbitrary real constant parameters; we stress that deformation terms

proportional to b are present only in D = 2+1. The length dimensions of k and b are

respectively [L−2] and [L−3]. In next two subsections we will study these continuous

deformations using the Lie algebra generators.

6As usual we will often omit ”∧” for exterior product of forms.
7Some of the calculations with forms are being done using the Mathematica code for differential forms

EDC [26].
8We acknowledge Sotirios Bonanos for discussions on this point
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3.2 Arbitrary dimensions

The general deformed Maxwell algebra found in the previous subsection can be written

in terms of the commutators of generators. In general dimensions there exists only the

following k-deformed algebra, with b = 0

[Pa, Pb] = i Zab, [Mab, Mcd] = −i ηb[c Mad] + i ηa[c Mbd],

[Pa, Mbc] = −i ηa[b Pc], [Zab, Mcd] = −i
(

ηb[c Zad] − ηa[c Zbd]

)

,

[Pa, Zbc] = +ik ηa[b Pc],

[Zab, Zcd] = +ik
(

ηb[c Zad] − i ηa[c Zbd]

)

. (3.7)

For k 6= 0 case we introduce dimensionless rescaled generators as

Pa =
Pa
√

|k|
, Mab = −Zab

k
, Jab = Mab +

Zab

k
, (3.8)

then the k-deformation of Maxwell algebra becomes

[Pa, Pb] = −i
k

|k| Mab,

[Pa, Mbc] = −i ηa[b Pc], [Mab, Mcd] = −i ηb[c Mad] + i ηa[c Mbd],

[Pa, Jbc] = [Mab, Jcd] = 0, [Jab, Jcd] = −i ηb[c Jad] + i ηa[c Jbd]. (3.9)

The algebra of (Pa, Mcd, Jcd, ) for k > 0 (k+-deformation) is so(D−1, 2)⊕so(D−1, 1),

i.e. we obtain the direct sum of AdSD and D-dimensional Lorentz group. For k < 0 (k−-

deformation) we get so(D, 1)⊕ so(D− 1, 1), i.e., the direct sum of dSD and D-dimensional

Lorentz group. We recall here that the above algebra for k > 0 was previously found by

Soroka and Soroka [18]. In our further discussion we will also use the notation k = ± 1
R2

where R is the radius of AdS (k > 0) or dS (k < 0) space.

3.3 D = 2 + 1

This case is interesting since there is an exotic b-deformation of the Maxwell algebra in

addition to the k-deformation. In D = 2+1 it is convenient to use the dual vectors for

anti-symmetric tensors, i.e.

Ma =
1

2
ǫabcMbc, Za =

1

2
ǫabcZbc, etc. (3.10)

The algebra (3.7) looks as follows

[Pa, Pb] = −iǫabcZ
c, [Ma,Mb] = iǫabcM

c,

[Pa,Mb] = iǫabcP
c, [Za,Mb] = iǫabcZ

c,

[Pa, Zb] = −ik ǫabcP
c − ib ǫabcM

c,

[Za, Zb] = −ik ǫabcZ
c + i b ǫabcP

c. (3.11)
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For b = 0, k 6= 0 , as was discussed previously, the algebra is so(2, 2) ⊕ so(2, 1) for

k > 0 (k+-deformation) and so(3, 1)⊕ so(2, 1) for k < 0 (k−-deformation). We rewrite the

formula (3.8) in a matrix form as






Pa

Ma

Ja






=






Uk













Pa

Ma

Za






, Uk =







1√
|k|

0 0

0 0 − 1
k

0 1 1
k






. (3.12)

The algebra (3.9) becomes

[Pa,Pb] = i
k

|k| ǫabcMc, [Pa,Mb] = i ǫabcPc, [Ma,Mb] = i ǫabcMc,

[Ja,Jb] = iǫabcJ c, [Pa,Jb] = [Ma,Jb] = 0. (3.13)

For k = 0, b 6= 0 (b-deformation) we can introduce






Pa

Ma

Ja






=






Ub













Pa

Ma

Za






, Ub =







1√
3 b1/3

0 1√
3 b2/3

− 1
3 b1/3

2
3

1
3 b2/3

1
3 b1/3

1
3 − 1

3 b2/3






(3.14)

and show that

[Pa,Pb] = −i ǫabcMc, [Pa,Mb] = iǫabcPc, [Ma,Mb] = iǫabcMc,

[Ja,Jb] = iǫabcJ c, [Pa,Jb] = [Ma,Jb] = 0. (3.15)

Then (Pa,Ma) are the so(3, 1) generators and Ja describes so(2, 1). This algebra is iso-

morphic to the one with b = 0, k < 0 (k−-deformation) (3.13).

To examine more general case with any values of the deformation parameters (b, k) we

consider the Killing form of the algebra (3.11),

gij = Cℓ
ikC

k
ℓj = 6







1 0 −2k
3

0 2k
3 −b

−2k
3 −b 2k2

3






⊗







1 0 0

0 −1 0

0 0 −1






. (3.16)

where Ck
ij is the structure constant in the base of nine generators Gi = (Pa,Ma, Za). Its

determinant is

det gij = 6943 A(b, k)3, A(b, k) ≡
(

k

3

)3

−
(

b

2

)2

. (3.17)

In the case det g = 0 the Killing form is degenerate, otherwise the algebra is semisimple.

In figure 1 we illustrate the parameter plane (b, k) which is divided into four regions

in the table 1; The origin, b = k = 0 on the figure (see I) is the case of original Maxwell

algebra. When (b, k) belongs to one of the two branches (b > 0, k > 0 and b < 0, k > 0) of

the degenerate curve (see II) we find that the algebra is a direct sum of D=2+1 Poincare

(Iso(2, 1)) and so(2, 1). The generators are






Pa

Ma

Ja






=







(2
b )

1/3 2 (2
b )

2/3

−2
9 (2

b )
1/3 8

9
1
9 (2

b )
2/3

2
9 (2

b )
1/3 1

9 −1
9 (2

b )
2/3













Pa

Ma

Za






(3.18)
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Figure 1. The phase diagram for deformed D=2+1 Maxwell algebra.

I det g = 0 b = 0, k = 0, Maxwell Maxwell algebra

II det g = 0 A(b, k) = 0 Poincaré Iso(2, 1) ⊕ so(2, 1)

III det g > 0 A(b, k) > 0 AdS so(2, 2) ⊕ so(2, 1)

IV det g < 0 A(b, k) < 0 dS so(3, 1) ⊕ so(2, 1)

Table 1. The phase sectors for deformed D=2+1 Maxwell algebra.

and satisfy

[Pa,Pb] = 0, [Pa,Mb] = iǫabcPc, [Ma,Mb] = iǫabcMc,

[Ja,Jb] = iǫabcJ c, [Pa,Jb] = [Ma,Jb] = 0. (3.19)

The AdS region (see III) includes k+-deformation for which the algebra is so(2, 2) ⊕
so(2, 1). One can show that the deformed algebra for any internal point (b, k) in sector (III)
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is isomorphic to so(2, 2) ⊕ so(2, 1). The generators are constructed as linear combinations

of (P,M,Z),






Pa

Ma

Ja






=






U+(b, k)













Pa

Ma

Za






, U+(b, k) ∈ GL(3, R) (3.20)

and (Pa,Ma,Ja) verify the same AdS algebra as (3.13) with k > 0. The explicit form of

the matrix U+(b, k) is discussed in the appendix. It is ill-defined as (b, k) approaches the

boundary (II) because of the appearance of singular coefficients.

The dS region (see IV) includes k−- and b-deformations for which the algebra is iso-

morphic to so(3, 1) ⊕ so(2, 1). It is true for general deformations corresponding to any

internal point (b, k) in sector (IV),






Pa

Ma

Ja






=






U−(b, k)













Pa

Ma

Za






, U−(b, k) ∈ GL(3, R), (3.21)

and (Pa,Ma,Ja) verify the same dS algebra as (3.13) with k < 0, or equivalently given

by (3.15). It is shown in appendix A that when k = 0 the transformation matrix U−(b, k)

is Ub described by (3.14), while it becomes Uk of k−-deformation (3.12) when b = 0, k < 0.

It is singular as (b, k) approaches the boundary (II), similar as in region (III).

Finally we observe that if a new length scale R′ is introduced by the relation

b =
1

R′3
(3.22)

the critical curve equation A = 0 (see (1.6)) is described by two half-lines relating the

parameters R and R′,

R′ = ±
(

3
1
2

2
1
3

)

R, (R > 0). (3.23)

4 Particle models on the k-deformed Maxwell algebra

In this section we will discuss a model realizing in arbitrary dimension D the deformed

Maxwell algebras and look for the physical meaning of the additional coordinates (fab, θ
ab).

Using the techniques of non-linear realization, (see e.g. [15]), we generalize the results

described in sect 2 for the standard Maxwell algebra [14] to those for the deformed Maxwell

algebra with (k 6= 0, b = 0). In such a way we obtain the generalization to AdS(dS) space-

time of the model describing the particle interacting with constant values of electromagnetic

field via the Lorentz force.

4.1 Standard parametrization of the coset

We consider a coset G/H with G = {Pa,Mab, Zab},H = {Mab} and parametrize the group

element g using (xa, θab), the group parameters associated to the generators (Pa, Zab).

Following to (2.1) we define

g = eiPaxa
e

i
2
Zabθ

ab
. (4.1)
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The space-time symmetry is k-deformed Maxwell algebra (3.7) and {Pa, Zab} form subal-

gebra generators isomorphic to those of AdS (dS) for k > 0, (k < 0). The MC form for this

coset is

Ω = −ig−1dg = La
P Pa +

1

2
Lab

Z Zab +
1

2
Lab

MMab, (4.2)

where

La
P = eb Λb

a, Lcd
Z = −1

k
Λ−1c

a

(

ωab − (Λ dΛ−1)ab
)

Λb
d, Lcd

M = 0, (4.3)

and Λ is a vector Lorentz transformations (Lorentz harmonics) in terms of new tensorial

coordinates θab as follows

Λa
b = (e−kθ)a

b
= δa

b + (−kθ)a
b +

1

2!
(−kθ)a

c(−kθ)c
b + . . . . (4.4)

Remember the indices a, b, . . . are rised and lowered using the Lorentz metric hab = (− :

+ . . . +). One-forms (ea, ωab) are

ea = dxcec
a = dxc

(

δc
a +

(

sin(
√

kr2)√
kr2

− 1

)(

δc
a − xcx

a

x2

)

)

,

ωab = dxcωc
ab = dxc δc

[a xb]

x2
(cos(

√
kr2) − 1), (4.5)

where r =
√−xaxa (for dS case k = −1/R2 < 0, sin(

√
kr2)√

kr2
is replaced by sinh(

√
−kr2)√

−kr2

correspondingly). They satisfy the known AdS MC equations

dea + ωa
be

b = 0, dωab + ωa
cω

cb = −k eaeb (4.6)

and L’s in (4.3) satisfy the MC equations (3.6), with b = 0. Remembering Lab
M = 0 they are

dLa
P = k Lac

Z LPc, dLab
Z = La

P Lb
P + k Lac

Z LZc
b. (4.7)

The particle action generalizing (2.7) for k 6= 0 looks as follows

L dτ = −m
√

−ηab La∗
P Lb∗

P +
1

2
fabL

ab∗
Z = −m

√

−gab(x) ẋaẋb dτ + Â∗, (4.8)

where gab is the metric, now depending only on x,

gab = ea
ceb

dηcd = ηab +

[

(

sin(
√

kr2)√
kr2

)2

− 1

]

(

ηab −
xaxb

x2

)

. (4.9)

We obtain the metric of AdS (dS) space with radius R, where k = 1/R2. The pullback Â∗

in (4.8) takes the explicit form

Â∗ = −1

2
fabL

ba∗
Z = −tr

(

1

2
f L∗

Z

)

= +
1

2k
tr
[

f Λ−1
(

ωτ − Λ ∂τΛ−1
)

Λ
]

dτ,

ωcd
τ =

ẋ[cxd]

x2
(cos(

√
kr2) − 1). (4.10)
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In a limit k → 0 (equivalently R → ∞) we obtain the undeformed Maxwell case (2.11)[14].

Now we shall describe the equations of motion following from the lagrangian (4.8).

Taking the variation with respect to fab we get (we suppress the tnsor indices)

ωτ − Λ ∂τΛ−1 = 0. (4.11)

In the limit k → 0 the terms linear in k reproduce the equation (2.9). Comparing with (4.3)

we see that the pullback of Lab
Z to the world line vanishes on shell. The variation with

respect to θab is simplified using (4.11) and becomes the same equation as in the Maxwell

case (2.8)

ḟab = 0. (4.12)

Finally variation with respect to xa gives, after using (4.11), the generalization of equation

of motion (2.10) describing particle moving under the Lorentz force,

m∇τ ẋa = Fabẋ
b, (4.13)

where

∇τ ẋa ≡ gab
√

−gef ẋeẋf

(

√

−gef ẋeẋf ∂τ
ẋb

√

−gef ẋeẋf
+ Γb

cdẋ
cẋd

)

,

Γb
cd =

1

2
gba(gac,d + gad,c − gcd,a), (4.14)

and

Fab(x, θ) = (Λ f Λ−1)cd ea
c eb

d

= f̃ab

(

sin(
√

kr2)√
kr2

)2

−
f̃[acx

cxb]

x2

sin(
√

kr2)√
kr2

(

sin(
√

kr2)√
kr2

− 1

)

(4.15)

provided that

f̃ab = (Λ fΛ−1)ab. (4.16)

We see that for k 6= 0 the generalized Lorentz force depends on θcd but in the limit k → 0

we get Fab = fab as expected.

The interaction term Â∗ in the lagrangian (4.8) defines an analogue of the EM potential

Â as one-form in the extended bosonic space of yA = (xa, θab). Due to the MC eq. (4.7)

its field strength is

F̂ = d Â =
1

2
fab La

P ∧ Lb
P +

k

2
fab La

Zc ∧ Lcb
Z +

1

2
(dfab) ∧ Lab

Z (4.17)

The first term depends only on the coordinate differential forms dxa and it can be shown

from (4.15) that
1

2
fabL

a
P ∧ Lb

P =
1

2
Fab dxa ∧ dxb, (4.18)

where Fab is given in (4.15) as appears in the equation of motion (4.13). The second

and third terms of (4.17) contain LZ and dfab whose pullback vanish as the result of the
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equations of motion (4.11) and (4.12). We can say that field strength occurring in (4.13) can

be regarded as the one described by the generalized U(1) gauge potential9 Â in the extended

bosonic space (xa, θab, fab). We see that on-shell (i.e. modulo equations of motion) this

field strength has only constant components fab with respect to the two-form base La∧Lb.

We conclude that on-shell fab is a constant (see (4.12)) and the variables (xa(τ), θab(τ))

satisfy the set of nonlinear differential equations, (4.11) and (4.13). If we express θab(τ) by

using (4.11) in terms of variables xa(τ), and substitute into Λ(θ) defining Fab, we obtain

the generalized Lorentz force, which is nonlocal in the variable xa(τ).

4.2 Second parametrization of the coset

In this subsection we shall consider a different choice of the coset parametrization,

g′ = eiPaxa
e

i
2
Zabθ

ab
h, h = e

i
2
kMabθ

ab ∈ H. (4.19)

The g′ and g differ by an element of H and are equivalent representatives of the coset

element of G/H. In particular in the k → 0 limit both g and g′ coincide. Using the

basis (3.8) we get

g′ = ei
√

|k|Paxa
e

i
2
kJabθ

ab
. (4.20)

The MC one-forms obtained from (4.20) can be expressed in two bases of k-deformed

Maxwell algebra, (3.7) and (3.9), as follows;

Ω′ = −ig
′−1dg′ = La

PPa +
1

2
Lab
MMab +

1

2
Lab
J Jab

= L
′a
P Pa +

1

2
L

′ab
Z Zab +

1

2
L

′ab
M Mab. (4.21)

The explicit forms of the MC one-forms are

La
P =

√

|k| ea, Lab
M = ωab, Lab

J = (Λ dΛ−1)ab. (4.22)

then

L
′a
P =

La
P

√

|k|
= ea, L

′ab
M = Lab

J = (Λ dΛ−1)ab,

L
′ab
Z =

1

k
(Lab

J − Lab
M) = −1

k
(ωab − (Λ dΛ−1)ab)). (4.23)

Note that La
P and Lab

M are given by the vielbein and the spin connection of the AdS (dS)

space and Lcd
J is the spin connection of the ”external” Lorentz space. We can interpret

L
′ab
Z as the difference of these spin connections.

The particle action on the coset (4.19) invariant under the deformed Maxwell algebra

can be obtained by replacing L by L′ in the action (4.8). We get

L′ dτ = −m
√

−ηab L
′a∗
P L

′b∗
P +

1

2
f ′

abL
′ab∗
Z = −m

√

−g′ab(x) ẋaẋb dτ + Â
′∗, (4.24)

9 The U(1) gauge transformation is considered in the extended space as Â → Â+dΛ(x, θ, f) under which

F̂ , therefore Fab, remains invariant on-shell.
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where g′ab is same AdS(dS) metric (4.9) obtained in the previous parametrization,

g′ab(x) = ea
ceb

dηcd = gab(x). (4.25)

The interaction term Â
′∗ is written in terms of an auxiliary dynamical variable f ′

ab as

Â
′∗ = −1

2
f ′

abL
′ba∗
Z = −1

2
tr(f ′LZ

′) =
1

2k
tr
[

f ′(ωτ − Λ ∂τΛ
−1)
]

dτ. (4.26)

Then lagrangian L in (4.8) and L′ in (4.24) can be identified if

f ′ = Λ f Λ−1. (4.27)

Since this is a point transformation of the coordinates, from {xa, θab, fab} to {xa, θab, f ′
ab},

the Euler-Lagrange equations of these lagrangians are equivalent.

Let us calculate the equations of motion which follow from the lagrangian (4.24).

Taking the variation with respect to f ′
ab we get

ωτ − Λ∂τΛ
−1 = 0, (4.28)

It coincides with (4.11) and means that the pullback of L
′ab
Z to the world line vanishes on

shell. In geometrical terms the ”gravitational” AdS spin connection coincides on shell with

the ”external ” Lorentz spin connection. Using (4.28) the variation of the lagrangian with

respect to θab is written as

∂τf
′
ab + (Λ∂τΛ−1)[a

c
f ′

cb] = ∂τf
′
ab + ωτ [a

cf ′
cb] ≡ Dτf ′

ab = 0. (4.29)

If we use the relation (4.27) it gives the same equation as (4.12) obtained in the first

parametrization. Finally equation of motion for x which define the generalized non-local

Lorentz force is

m∇τ ẋa = F ′
abẋ

b, (4.30)

where

F ′
ab = f ′

cd ea
c eb

d. (4.31)

Again using the relation (4.27) we obtain

f ′ = f̃ = Λ f Λ−1 and F ′
ab = Fab (4.32)

or equivalently

F̂ ′ =
1

2
F ′

abdxa ∧ dxb =
1

2
f ′

ab L
′a
P ∧ L

′b
P =

1

2
fab La

P ∧ Lb
P = F̂ . (4.33)

We conclude that on-shell (i.e. modulo equations of motion) the field strength has constant

components fab with respect to the 2-form base La
P ∧Lb

P but in the new base L
′a
P ∧L

′b
P the

variables f ′
ab are covariantly constant (see eq.(4.29)).

It will be interesting to have a physical interpretation of the non-local Lorentz force in

AdS(dS) space (see (4.13) and (4.30)).
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5 b-deformed Maxwell algebra in D = 2 + 1 and Goldstone-Nambu vec-

tor fields

In D=2+1 one can introduce second deformation parameter b. In this section after the

calculation of the MC one-forms for the b-deformed coset space we shall use the resulting

geometry to introduce an action for D=2+1 Abelian Goldstone-Nambu fields.

5.1 MC forms for b-deformed Maxwell algebra in D = 2 + 1

We consider the coset (4.1) in D=2+1 in order to define the extended space-time (xa, θa)

for the algebra (3.11) with k = 0

g = eixaPa eiθaZa = g0 eiθaZa, g0 = eixaPa . (5.1)

We compute the MC one-form in two steps,

Ω = −ig−1dg = e−iθaZa Ω0 eiθaZa − i e−iθaZa d eiθaZa . (5.2)

Firstly we calculate

Ω0 = g−1
0 dg0 = La

0P Pa + La
0ZZa + La

0MMa, (5.3)

where






La
0P

La
0M

La
0Z






=













1

0

0






δa

c +







F0(Y ) − 1

bx2 F2(Y )

−b(x2)2 F4(Y )






Oa

c +







−bx2 F3(Y )

−b2(x2)2 F5(Y )

F1(Y )






ǫa

cbx
b






dxc.

(5.4)

Here Oa
b = (δa

b − xaxb

x2 ) and

Fi(Y ) =
∑

n=0

Y 6n

(6n + i + 1)!
, Y = b

1
3 (x2)

1
2 , (i = 0, 1, 2, 3, 4, 5). (5.5)

The explicit forms of functions Fi(Y )’s are given in appendix B.

The complete MC one-form Ω becomes

Ω = La
P Pa + La

ZZa + La
MMa, (5.6)

with






La
P

La
M

La
Z






=













0

0

1






δa

c +







−b3(θ2)2 F4(Y
′)

−b2θ2 F2(Y
′)

F0(Y
′) − 1






Õa

c +







−b F1(Y
′)

−b4(θ2)2 F5(Y
′)

b2θ2 F3(Y
′)






ǫa

cbθ
b






dθc

+
[

(I3) δa
c +

(

VO

)

Õa
c +

(

VE

)

ǫa
cbθ

b
]







Lc
0P

Lc
0M

Lc
0Z






, (5.7)
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where Õa
b = (δa

b − θaθb

θ2 ) and Lc
0’s are given in (5.4). I3, VO, and VE are 3 × 3 matrices

acting on the three vector
(

L0P , L0M , L0Z

)

. I3 is the unit matrix and

(

VO

)

=







f0(Y
′) − 1, bθ2 f2(Y

′), −b3(θ2)2 f4(Y
′)

b3(θ2)2 f4(Y
′) f0(Y

′) − 1, −b2θ2 f2(Y
′)

−bθ2 f2(Y
′), −b2(θ2)2, f4(Y

′) f0(Y
′) − 1






,

(

VE

)

=







b2θ2 f3(Y
′), b3(θ2)2 f5(Y

′), −b f1(Y
′)

b f1(Y
′), b2θ2 f3(Y

′), −b4(θ2)2 f5(Y
′)

−b3(θ2)2 f5(Y
′), − f1(Y

′), b2θ2 f3(Y
′)






. (5.8)

Here the functions Fi(Y
′)’s are given in (5.5) and the functions fi(Y

′)’s are

fi(Y
′) ≡

∑

n=0

Y ′6n

(6n + i)!
, Y ′ = b

2
3 (θ2)

1
2 , (i = 0, 1, 2, 3, 4, 5). (5.9)

The explicit forms of (5.9) are listed in appendix B.

For small deformation parameter b the MC one-forms are, up to b2,

La
P = dxa − b

(

(
x2

4!
ǫa

bcx
c +

1

2
ǫa

cdθ
d ǫc

bex
e )dxb +

1

2
ǫa

bcθ
c dθb

)

+b2

(

x2 θ2

2!3!
Õa

c Oc
b +

θ2

3!
ǫa

bcθ
c +

(x2)2

5!
ǫa

cdθ
d Oc

b +
(x2)3

7!
Oa

b

)

dxb + O(b3),

La
M = b

(

x2

3!
Oa

c dxc + ǫa
cbθ

b dxc

)

−b2

((

θ2

2!2!
Õa

c ǫc
bdx

d +
x2

4!
ǫa

cdθ
d ǫc

bex
e +

(x2)2

6!
ǫa

bcx
c

)

dxb +
θ2

3!
Õa

b dθb

)

+O(b3),

La
Z = dθa +

1

2
ǫa

cbx
b dxc − b

(

(x2)2

5!
Oa

c +
θ2

2!
Õa

c +
x2

3!
ǫa

dbθ
b Od

c

)

dxc

+b2

({

x2 θ2

2!4!
Õa

c ǫc
bdx

d +

(

(x2)2

6!
+

θ2

2!3!

)

ǫa
cdθ

d ǫc
bex

e +
(x2)3

8!
ǫa

bcx
c

}

dxb

+
θ2

4!
ǫa

bcθ
c dθb

)

+ O(b3). (5.10)

Using the formula (5.10) one can calculate the metric in the extended space-time yA =

(xa, θab) with the following decomposition

gAB(y)ẏAẏB = gab(x, θ)ẋaẋb + 2 gab̄(x, θ)ẋaθ̇b̄ + gāb̄(θ)θ̇āθ̇b̄, (5.11)
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where

gab(x, θ) = ηab − b

(

(xθ)ηab −
1

2
(xaθb + xbθa)

)

+b2

((

2

7!
− 1

(4!)2

)

(x2)3
(

ηab −
xaxb

x2

)

− x2

5!
(xa ǫbcdx

c θd + xb ǫacdx
c θd)

+

(

1

4
(xθ)2 +

1

6
x2 θ2

)

ηab +
1

12
x2 θaθb −

1

6
(xθ) (xaθb + xbθa) −

1

6
θ2 (xaxb)

)

+O(b3)

gab̄(x, θ) = − b

2
ǫab̄cθ

c +
b2

4

(

x2

12
(θa xb̄ − (xθ)ηab̄) + θ2 ǫab̄cx

c + θb̄ ǫacdx
cθd

)

+ O(b3),

gāb̄(θ) = −b2 θ2

4

(

ηāb̄ −
θāθb̄

θ2

)

+ O(b3). (5.12)

It can be checked from the general formula (5.7) for La
P that in all orders of b the metric

gāb̄ does not depend on the space-time coordinates xa.

5.2 Nonlinear action for D = 2 + 1 Goldstone-Nambu vector fields

In order to introduce the D=2+1 Goldstone-Nambu fields θa(x) we replace the coset (5.1)

describing the coordinates (xa, θa) in our generalized D=2+1 space-time by

g̃ = eiPaxa
eiZaθa(x). (5.13)

Here the independent coordinates are xa, and the fields θa(x) describe three-dimensional

submanifold in (xa, θa). The fields θa(x) transform homogeneously under the so(2,1)

rotations generated by Ma, but inhomogenously under the generators Za, what implies

spontaneous breaking of Za symmetries. The Goldstone-Nambu fields describing sponta-

neously broken directions in extended space-time were introduced by nonlinear realization

method [27, 28] in supersymmetric theories. The broken directions were provided by the

odd superspace degrees of freedom describing fermionic Goldstino fields [19], or by intro-

ducing in D dimensional space-time the p-brane fields (D > p + 1) (spontaneously broken

directions are transversal to the p-brane, see for example [16, 29, 30]). In this section

we shall convert in D =2+1 the additional degrees of freedom θa into Abelian vectorial

Goldstone-Nambu fields θa(x) which can be also interpreted as describing a 3-brane in

D = 6 space time (xa, θa).

In order to study the dynamics of fields θa(x) we should calculate, using (5.13), the

left-invariant MC one-forms

Ω̃ = −ig̃−1dg̃ = Pa ẽa +
1

2
Zab ω̃ab +

1

2
Mab l̃ab, (5.14)

where the only independent differentials are dxa. The one-form Ω̃ can be obtained from Ω

in (5.2) by taking the pullback with respect to xa → θa, then

dθa⋆ =
∂θa(x)

∂xb
dxb; (5.15)
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in such a way every form is defined on xa-space. One can employ further the one-forms (5.2)

with k = 0, b 6= 0, explicitly calculated in section 5.1. From (5.7) we obtain

ẽa = La⋆
P =

(

ea
b(x, θ(x)) + fa

c(θ(x))
∂θc(x)

∂xb

)

dxb ≡ ẽa
b(x, θ(x))dxb. (5.16)

where

ea
b(x, θ) = δa

b − b

(

x2

4!
ǫa

bcx
c +

1

2
((xcθc)δ

a
b − xaθb)

)

+b2

((

x2 θ2

2!3!
+

(x2)3

7!

)

δa
b −

(

θ2

2!3!
+

(x2)2

7!

)

xaxb −
x2

2!3!
θaθb +

(xθ)

2!3!
θaxb

+

(

θ2

3!
+

(x2)2

5!

)

ǫa
bcθ

c − (x2)

5!
ǫa

cdθ
d xcxb

)

+ O(b3), (5.17)

and

fa
c(θ(x)) = − b

2
ǫa

cbθ
b + O(b3). (5.18)

One can check that fa
c(θ) depends only on θa and the dreibein ẽa

b is linear in the derivatives

of the Goldstone fields.

In order to construct the action which is invariant under the b-deformed Maxwell group

one can use the Volkov-Akulov formula for invariant D=2+1 action,

S =

∫

(− 1

3!
)ǫabc La⋆

P Lb⋆
P Lc⋆

P =

∫

d3xLθ, Lθ = det(ẽa
b). (5.19)

Using (5.16)-(5.18) one can write explicitly the terms up to b2,

ẽa
b(x, θ) = ea

b(x, θ) + b ha
b, ha

b = −1

2
ǫa

cdθ
d ∂θc(x)

∂xb
. (5.20)

Using

det(ẽa
b) = − 1

3!
ǫabcǫ

def ẽa
d ẽb

e ẽc
f

= det(ea
b)

(

1 + b (e−1)ba ha
b +

b2

2
(e−1)ac (e−1)bd hc

[ah
d
b]

)

+ O(b3),

det(ea
b) = 1 − b (xθ) + b2

(

−3(x2)3

2240
+

x2 θ2

12
+

(xθ)2

3

)

+ O(b3),

(e−1)ba = δa
b + b

(

x2

4!
ǫa

bcx
c +

1

2
((xcθc)δ

a
b − xaθb)

)

+ O(b2) (5.21)

we obtain

Lθ = det(ẽa
b) = 1 − b

(

(xθ) +
1

2
ǫabcθ

a ∂θc

∂xb

)

+ b2

((

− 3(x2)3

2240
+

x2 θ2

12
+

(xθ)2

3

)

− x2

48
((xθ)δj

i − xjθ
i)

∂θj

∂xi
+

(xθ)

4
ǫabcθ

a ∂θc

∂xb
+

1

8
ǫabcǫ

defθaθd
∂θb

∂xe

∂θc

∂xf

)

+ O(b3).

(5.22)
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The lagrangian density (5.22) contains as one of two terms linear in b the exact topological

lagrangian for D=2+1 Chern-Simons field

LCS = − b

2
ǫabcθ

a ∂θb

∂xc
. (5.23)

If we consider higher order terms in b they can be treated as describing new interaction

vertices and the Nambu-Goldstone field θa(x) looses its topological nature. The appear-

ance of the terms depending explicitly on xa and θa in (5.22) is related with the curved

geometry in the extended space (see (5.12)). Although the explicit formula (5.22) looks

complicated the covariance of the action (5.19) under the deformed Maxwell group trans-

formations which describe the group of motions in the curved space (xa, θa) follows from

our construction obtained by using the nonlinear realization techniques.

6 Outlook

In this paper we consider deformations of the Maxwell algebra. The general mathematical

techniques permit us to solve the problem of complete classification of these deformations.

The commuting generators Zab in (1.1) are becoming non-abelian in arbitrary dimension D

and are promoted to the D(D−1)
2 generators of the so(D−1, 1) Lorentz algebra. The particle

dynamics in the D(D+1)
2 dimensional coset (4.1) becomes the theory of point particles

moving on AdS (for k > 0) or dS (for k < 0) group manifolds in external electromagnetic

fields. If we use standard formula (4.8) for the particle action in curved space-time one can

show that the particle moves only in the space-time sector (xa, θab = 0) of the extended

space-time (xa, θab) with a non-local Lorentz force. The supplementary coordinates θab

generated by Zab, enter only in MC one-forms and in particular they will appear in the

model only in the term representing the electromagnetic coupling. It is a result of the

field equations that the components of electromagnetic field strength defined in the basis

of momenta one-forms La are constant on-shell(see (4.18)).

In ”exotic” dimension D = 2+1 the symmetry corresponding to the two parameter

deformation of Maxwell algebra is less transparent. The coset (4.1) in D=2+1 if b 6= 0

is neither the group manifold nor even the symmetric coset space. In order to find the

dynamical realization of deformed Maxwell algebra with b 6= 0 in D=2+1 space-time, in

section 5 we consider the D=2+1 field theoretical model obtained by the assumption that

the coordinates xa are primary and the coordinates θa describe the Goldstone field values.

We obtained a non-linear lagrangian for vector Goldstone field containing the bi-linear

kinetic term describing exactly the D=2+1 CS Abelian action.

We would like to point out some problems which deserve still further consideration.

1) The Maxwell algebra was obtained as a deformation of the relativistic Poincare al-

gebra in the presence of constant electromagnetic background. One can observe that

the relation (1.1) is dual ( in the sense of Fourier transformation ) to the canonical

non-commutativity of the Minkowski space-time (see e.g. [31, 32])

[x̂µ, x̂ν ] = iθµν (6.1)
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which, as it is argued [33], describes in algebraic approximation of the quantum

gravity background. It could be interesting to study this parallelism further.

2) Maxwell algebra contains in four dimensions three quadratic and one quartic

Casimirs [1, 2] (see (2.19)). In arbitrary dimension D the Casimir C2 = ZabZ
ab

can be incorporated in the particle action by means of the following extension of the

action (2.7)

L̂ = πaẋ
a +

1

2
fab

(

θ̇ab +
1

2
x[bẋb]

)

− λ

2
(π2 + m2) − λ′

2
(f2 + m′2) (6.2)

where λ, λ′ are Lagrange multipliers. The action (6.2) treats symmetrically the dy-

namics of xa and θab variables. One obtains the following second order lagrangian

L̃ = −m
√

−ẋ2 − m′

√

−
(

θ̇ab +
1

2
x[bẋb]

)2

. (6.3)

Such a model could possibly relate the additional coordinates θab with spin-like de-

grees of freedom. It should be interesting to consider the model (6.2) in detail and

further extend it to the deformed Maxwell algebra geometries, using the result of

section 3.

3) As we already mentioned, the deformation parameter k with the dimensionality [L−2]

can be described by the formula |k| = 1
R2 , and interpreted as the AdS(dS) radius for

k > 0(k < 0). The parameter b, with the dimensionality [L−3], if k = 0 is related

with the closure of the quadrilinear relation for the following non Abelian translation

generators Pa,

[[Pa, Pb], [Pc, Pd]] = ib (ηa[cǫbd]e − ηb[cǫad]e)P
e. (6.4)

This relation is an example of higher order Lie algebra for n = 4 [34, 35]. It is

an interesting task to understand the translations (6.4) as describing some D=2+1

dimensional curved manifold.

4) Recently in [13, 14] there were considered an infinite sequential extensions of the

Maxwell algebra with additional tensorial generators. The concrete form of these

extensions can be determined by studying the Chevalley-Eilenberg cohomologies at

degree two. The point particle models related with these Poincare algebra extensions

have been studied in [13]. There appears an interesting question of the dynamical

and physical interpretation of the additional tensorial degrees of freedom.

Acknowledgments

We thank Jorge Alfaro, Sotirios Bonanos, Roberto Casalbuoni, Jaume Garriga, Gary Gib-

bons, Mikhail Vasilev, Dimitri Sorokin for discussions. JL would like to thank Universitat

de Barcelona for warm hospitality and acknowledge the support by Polish Ministry of Sci-

ence and High Education grant NN202 318534. This work has been partially supported

– 21 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
9

by MCYT FPA 2007-66665, CIRIT GC 2005SGR-00564, Spanish Consolider-Ingenio 2010

Programme CPAN (CSD2007-00042). J.G. would like to thank the Galileo Galilei Institute

for Theoretical Physics for its hospitality and INFN for partial support during part of the

elaboration of this work.

A Determination of transformation matrix U(b, k)

A.1 U−(b, k) for det g < 0

Here we discuss how the transformation matrix U−(b, k) in (3.21) is determined. We will see

(P,M,Z) is related only to dS generators (P,M,J ) using real component matrix U−(b, k)

for any (b, k) in the det g < 0 region (IV). We fix it becomes that of b-deformation for k = 0

in (3.14),

U−(b, k = 0) = Ub. (A.1)

Near the b-axis we can find U−(b, k) as the perturbation for small k. It tells a structure of

the matrix as

U−(b, k) =













f3(κ)+ κ2

9
f4(κ)√

3b1/3
2κ

3
√

3
(f1(κ) + κ

3f2(κ))
f1(κ)+ κ

3
f2(κ)√

3b2/3

− f3(κ)−κ2

9
f4(κ)

3b1/3
2
3

(

1 + κ
3 (f1(κ) − κ

3f2(κ))
) f1(κ)−κ

3
f2(κ)

3b2/3

f3(κ)−κ2

9
f4(κ)

3b1/3
1
3

(

1 − 2κ
3 (f1(κ) − κ

3f2(κ))
)

− f1(κ)−κ
3
f2(κ)

3b2/3













(A.2)

where

κ =
k

b2/3
, 1 − 4κ3

27
> 0, for det g < 0. (A.3)

For small κ, fj(κ)’s are polynomials of κ3 and fj(0) = 1,

f1(κ) =

(

1 +
5κ3

34
+

44κ6

38
+ . . .

)

, f2(κ) =

(

1 +
7κ3

34
+

65κ6

38
+ . . .

)

f3(κ) =

(

1 +
4κ3

34
+

35κ6

38
+ . . .

)

, f4(κ) =

(

1 +
8κ3

34
+

77κ6

38
+ . . .

)

. (A.4)

General forms of fj(κ)’s are found by requiring that the (P,M,J ) satisfy the dS algebra

at point (b, k) in det g < 0. First from [Ja,Jb] = −(−i)ǫabcJ c we have

f3(κ) =
(f̃1(κ))2

1 − 2
3 κ f̃1(κ)

+
κ2

9
f4(κ), f̃1(κ) ≡ f1(κ) − κ

3
f2(κ). (A.5)

and f̃1(κ) satisfies a third order equation
(

1 − 4κ3

27

)

(f̃1(κ))3 + κ f̃1(κ) − 1 = 0. (A.6)

Next [Ma,Mb] = −(−i)ǫabcMc is satisfied using above. [Pa,Jb] = 0 fix f4(κ) as a function

of f1(κ) and f2(κ) as

f4(κ) =
3
(

f2(κ)
(

1 − κ
3 f̃1(κ)

)

− (f̃1(κ))2
)

f̃1(κ)

κ
(

1 − 2κ
3 f̃1(κ)

)(

1 + κ
3 f̃1(κ)

) . (A.7)
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From [Pa,Pb] = +(−i)ǫabcMc we determine f2(κ)

f2(κ) =
1

(1 − 4κ3

27 ) f1(κ)
. (A.8)

Using (A.6) and (A.8) we get

f1(κ)3 =
1 +

√

1 − 4κ3

27

2
√

1 − 4κ3

27

3 . (A.9)

f1(κ) is the real cubic root of this equation satisfying f1(0) = 1.

In this way we have determined all functions fj(κ). They are shown to give generators

verifying all the dS commutation relations in (3.15). In small κ expansion they agree with

the perturbative expansion (A.4) around b-deformation (k = 0).

It is also seen that they are singular on the degenerate curve

− A(b, k) =

(

b

2

)2

−
(

k

3

)3

=
b2

4

(

1 − 4κ3

27

)

= +0. (A.10)

It is very interesting to see if the generators are analytically continuating to those of

k−-deformation on the b = 0, k < 0 line, that is if

U−(0, k) = Uk (A.11)

holds for k < 0. It is shown by taking a limit

b → 0, k < 0 (fixed); κ =
k

(b2)
1
3

→ −∞. (A.12)

In doing it

f1(κ)3 → − 27

8κ3
=

27b2

−8k3
, (A.13)

then the leading terms of fi’s are

(f1, f2, f3, f4) →
(

3 b2/3

−2k
,

9 b4/3

2k2
,

√
3 b1/3

2
√
−k

,
9
√

3 b5/3

2
√
−k

5

)

. (A.14)

Taking this limit in (A.2) it goes to Uk of k− deformation in (3.12).

A.2 U+(b, k) for det g > 0

Similarly we determine the transformation matrix U+(b, k) for det g > 0 in (3.20). We will

see (P,M,Z) is related only to AdS generators (P,M,J ) using real component matrix

U+(b, k) for any (b, k) in the det g > 0 region (III). We fix it becomes that of k+-deformation

for b = 0 in (3.12),

U+(b = 0, k > 0) = Uk. (A.15)
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Near the k-axis we can find U+(b, k) as the perturbation for small b. It tells a structure of

the matrix as

U+(b, k) =







1√
k

h3(β) β h4(β) 3β
2k h4(β)

− β√
k

h1(β) −2β2 h2(β) − 1
k h5(β)

β√
k

h2(β) (1 + 2β2 h1(β)) 1
k (1 + 3β2 h1(β))






(A.16)

where

β =
b

k3/2
, 1 − 27β2

4
> 0, for det g > 0. (A.17)

For small β, hj(β)’s are polynomials of β2 and hj(0) = 1,

h1(β) = 1 + 4β2 + 21β4 + . . . , h2(β) = 1 + 5β2 + 28β4 + . . .

h3(β) = 1 +
15β2

23
+

1155β4

27
+ . . . , h4(β) = 1 +

35β2

23
+

3003β4

27
+ . . . ,

h5(β) = 1 + 3β2 + 15β4 + . . . . (A.18)

General forms of hj(β)’s are found by requiring that the (P,M,J ) satisfy the AdS alge-

bra (3.13) with k > 0 at point (b, k) in det g > 0.

The results are

h1(β) =
h2(β)

(

1 + 2β2 h2(β)
)

1 + 3β2 h2(β)
,

h3(β) =

(

2 + 3β2 h2(β)
)

2 (1 + 2β2 h2(β))

√

√

√

√

(1 + 3β2 h2(β))
(

1 − 27 β2

4

)

h2(β)
,

h4(β) =

√

√

√

√

h2(β)
(

1 − 27 β2

4

)

(1 + 3β2 h2(β))
,

h5(β) =
1 + 9 β2 h2(β)

4
(

1 − 27 β2

4

)

(1 + 3β2 h2(β))2
, (A.19)

and h2(β) is determined by a third order equation

1 −
(

1 − 9β2
)

h2(β) − 4β2

(

1 − 27β2

4

)

h2(β)2 − 4β4

(

1 − 27β2

4

)

h2(β)3 = 0, (A.20)

whose real solution is

h2(β) =
1

3β2





1
√

1 − 27 β2

4

cos





1

3
arctan





3
√

3 β

2
√

1 − 27 β2

4







− 1



 . (A.21)

In this way we have determined all functions hj(β) having the small β expansion

in (A.18) thus U+(b, k) becomes Uk for b = 0, k > 0. It is also seen that they are singular

on the degenerate curve

A(b, k) =

(

k

3

)3

−
(

b

2

)2

=

(

k

3

)3(

1 − 27β2

4

)

= +0. (A.22)
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B fj and Fj

Here we give results of summations of functions fj in (5.9) and Fj in (5.5). fj(Y ) ≡ fj(α =

1, Y ) are10

f0(α, Y ) =
1

3

(

2 cos

(
√

3α Y

2

)

cosh

(

α Y

2

)

+ cosh(α Y )

)

,

f1(α, Y ) =
1

3Y

(√
3 sin

(
√

3 α Y

2

)

cosh

(

α Y

2

)

+ cos

(
√

3 αY

2

)

sinh

(

αY

2

)

+ sinh(α Y )

)

,

f2(α, Y ) =
1

3Y 2

(√
3 sin

(
√

3 αY

2

)

sinh

(

αY

2

)

− cos

(
√

3 αY

2

)

cosh

(

αY

2

)

+ cosh(α Y )

)

,

f3(α, Y ) =
1

3Y 3

(

− 2 cos

(
√

3 α Y

2

)

sinh

(

α Y

2

)

+ sinh(α Y )

)

,

f4(α, Y ) =
1

3Y 4

(

−
√

3 sin

(
√

3 αY

2

)

sinh

(

αY

2

)

− cos

(
√

3 αY

2

)

cosh

(

αY

2

)

+ cosh(α Y )

)

,

f5(α, Y ) =
1

3Y 5

(

−
√

3 sin

(
√

3 αY

2

)

cosh

(

αY

2

)

+ cos

(
√

3 αY

2

)

sinh

(

αY

2

)

+ sinh(α Y )

)

(B.1)

and Fj(Y )’s are

F0(Y ) =
1

3Y

(

√
3 cosh

(

Y

2

)

sin

(
√

3 Y

2

)

+ cos

(
√

3 Y

2

)

sinh

(

Y

2

)

+ sinh(Y )

)

,

F1(Y ) =
1

3Y 2

(

√
3 sin

(
√

3 Y

2

)

sinh

(

Y

2

)

− cos

(
√

3Y

2

)

cosh

(

Y

2

)

+ cosh(Y )

)

,

F2(Y ) =
1

3Y 3

(

−2 cos

(
√

3 Y

2

)

sinh

(

Y

2

)

+ sinh(Y )

)

,

F3(Y ) =
1

3Y 4

(

−
√

3 sin

(
√

3 Y

2

)

sinh

(

Y

2

)

− cos

(
√

3Y

2

)

cosh

(

Y

2

)

+ cosh(Y )

)

,

F4(Y ) =
1

3Y 5

(

−
√

3 cosh

(

Y

2

)

sin

(
√

3Y

2

)

+ cos

(
√

3Y

2

)

sinh

(

Y

2

)

+ sinh(Y )

)

,

F5(Y ) =
1

3Y 6

(

−3 + 2 cos

(
√

3 Y

2

)

cosh

(

Y

2

)

+ cosh(Y )

)

(B.2)

10 For xa is timelike Y 6 = −b2r6, r =
√
−x2. In this case trigometric functions and trigonometric ones

are interchanged.
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For small b we have expansions of fj and Fj as

Fi(Y ) =
1

(i + 1)!
+

b2 (x2)3

(i + 7)!
+ O(b4),

Fi(Y
′) =

1

(i + 1)!
+ O(b4), fi(Y

′) =
1

i!
+ O(b4). (B.3)

Keeping up to b2,







La
0P

La
0M

La
0Z






=













1

0

0






δa

c +







b2(x2)3/7!

bx2/3!

−b(x2)2/5!






Oa

c +







−bx2/4!

−b2(x2)2/6!
1
2 + b2(x2)3/8!






ǫa

cbx
b






dxc.

(B.4)

and







La
P

La
M

La
Z






=













0

0

1






δa

c +







0

−b2θ2/3!

0






Õa

c +







−b/2!

0

b2θ2/4!






ǫa

cbθ
b






dθc.

+
[

(I3) δa
c +

(

VO

)

Õa
c +

(

VE

)

ǫa
cbθ

b
]







Lc
0P

Lc
0M

Lc
0Z






, (B.5)

where Lc
0’s are given in (B.4) and

(

VO

)

=







0 bθ2/2! 0

0 0 −b2θ2/2!

−bθ2/2! −b2(θ2)2/4! 0






,

(

VE

)

=







b2θ2/3! 0 −b

b b2θ2/3! 0

0 −1 b2θ2/3!






. (B.6)

Then up to b2 we have the result of (5.10).
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Poincaré algebras, J. Phys. A 42 (2009) 145206 [arXiv:0808.2243] [SPIRES].

[14] S. Bonanos and J. Gomis, Infinite sequence of Poincaré group extensions: structure and
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